Interleaved multishot imaging by spatiotemporal encoding: A fast, self-referenced method for high-definition diffusion and functional MRI.
نویسندگان
چکیده
PURPOSE Single-shot imaging by spatiotemporal encoding (SPEN) can provide higher immunity to artifacts than its echo planar imaging-based counterparts. Further improvements in resolution and signal-to-noise ratio could be made by rescinding the sequence's single-scan nature. To explore this option, an interleaved SPEN version was developed that was capable of delivering optimized images due to its use of a referenceless correction algorithm. METHODS A characteristic element of SPEN encoding is the absence of aliasing when its signals are undersampled along the low-bandwidth dimension. This feature was exploited in this study to segment a SPEN experiment into a number of interleaved shots whose inaccuracies were automatically compared and corrected as part of a navigator-free image reconstruction analysis. This could account for normal phase noises, as well as for object motions during the signal collection. RESULTS The ensuing interleaved SPEN method was applied to phantoms and human volunteers and delivered high-quality images even in inhomogeneous or mobile environments. Submillimeter functional MRI activation maps confined to gray matter regions as well as submillimeter diffusion coefficient maps of human brains were obtained. CONCLUSION We have developed an interleaved SPEN approach for the acquisition of high-definition images that promises a wider range of functional and diffusion MRI applications even in challenging environments.
منابع مشابه
High-resolution diffusion-weighted imaging with interleaved variable-density spiral acquisitions.
PURPOSE To develop a multishot magnetic resonance imaging (MRI) pulse sequence and reconstruction algorithm for diffusion-weighted imaging (DWI) in the brain with submillimeter in-plane resolution. MATERIALS AND METHODS A self-navigated multishot acquisition technique based on variable-density spiral k-space trajectory design was implemented on clinical MRI scanners. The image reconstruction ...
متن کاملInverse reconstruction method for segmented multishot diffusion-weighted MRI with multiple coils.
Each k-space segment in multishot diffusion-weighted MRI is affected by a different spatially varying phase which is caused by unavoidable motions and amplified by the diffusion-encoding gradients. A proper image reconstruction therefore requires phase maps for each segment. Such maps are commonly derived from two-dimensional navigators at relatively low resolution but do not offer robust solut...
متن کاملFunctional magnetic resonance imaging using PROPELLER-EPI.
Periodically rotated overlapping parallel lines with enhanced reconstruction-echo-planar imaging (PROPELLER-EPI) is a multishot technique that samples k-space by acquisition of narrow blades, which are subsequently rotated until the entire k-space is filled. It has the unique advantage that the center of k-space, and thus the area containing the majority of functional MRI signal changes, is sam...
متن کاملDynamic Contrast Magnetic Resonance Imaging (DCE-MRI) and Diffusion Weighted MR Imaging (DWI) for Differentiation between Benign and Malignant Salivary Gland Tumors
Background: Salivary gland tumors form nearly 3% of head and neck tumors. Due to their large histological variety and vicinity to facial nerves, pre-operative diagnosis and differentiation of benign and malignant parotid tumors are a major challenge for radiologists. Objective: The majority of these tumors are benign; however, sometimes they tend to transform into a malignant form. Functional M...
متن کاملClinical multishot DW-EPI through parallel imaging with considerations of susceptibility, motion, and noise.
Geometric distortions and poor image resolution are well known shortcomings of single-shot echo-planar imaging (ss-EPI). Yet, due to the motion immunity of ss-EPI, it remains the most common sequence for diffusion-weighted imaging (DWI). Moreover, both navigated DW interleaved EPI (iEPI) and parallel imaging (PI) methods, such as sensitivity encoding (SENSE) and generalized autocalibrating para...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Magnetic resonance in medicine
دوره 75 5 شماره
صفحات -
تاریخ انتشار 2016